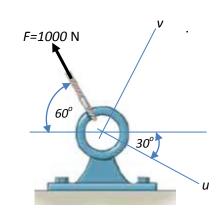

Time: One hour

Instructors: Prof. Dr. Bishri Abdel-Mo'emen, Assoc. Prof. Ayman Ashour, and Dr. Waleed Albeshbeshy

Student Name: Section No:


Question 1: (5 Points)

Determine the *u* and *v* components of the 1000 N force shown in Figure.

$$F_u$$
= -1000 cos 30°
= -866 N

$$F_{\rm v} = 1000 \sin 30^{\circ}$$

= 500 N

Question 2: (5 Points)

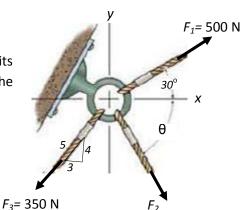
If the magnitude of the resultant force acting on the eyebolt is 800 N and its direction measured clockwise from the positive x axis is 60° , determine the magnitude of F_2 and the angle θ .

Given:
$$R_x = 800 \cos 60^\circ = 400 \text{ N}$$

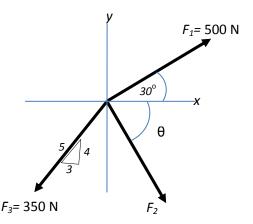
 $R_v = 800 \sin 60^\circ = 692.82 \text{ N}$

$$R_x = 500 \cos 30^{\circ} + F_2 \cos \theta - 350 (3/5)$$

 $400 = 433 + F_2 \cos \theta - 210$
 $F_2 \cos \theta = 177$ (1)


$$R_y = 500 \sin 30^{\circ} - F_2 \sin \theta - 350 (4/5)$$

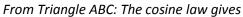
 $692.82 = 250 - F_2 \sin \theta - 280$
 $F_2 \sin \theta = -722.82$ (2)


Dividing (2) by (1),

Tan
$$\theta$$
= (-722.82)/(177)= -4.08
 $\therefore \theta = -76.24^{o}$ (the negative means that F in the first quadrant)

Substituting in either (1) or (2)

$$F = 744.18 N$$

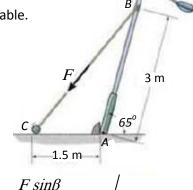


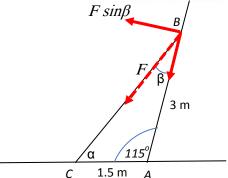
Question 3: (5 Points)

In order to raise the lamp post from the position shown, force **F** is applied to the cable.

If F equals 1000 N, determine the moment produced by F about point A.

$$\overline{CB} = \sqrt{3^2 + 1.5^2 - 2(1.5)(3)cos115}$$
$$= \sqrt{15.054} = 3.88$$


From the sine law:


$$\frac{1.5}{\sin\beta} = \frac{3.88}{\sin 115}$$

$$\therefore sin\beta = 0.35$$

The moment about A:

$$M_A = (F \sin \beta)(3) = 1000 \times 0.35 \times 3$$

= 1051 N.m

Question 4: (5 Points)

As an airplane's brake are applied, the nose wheel exerts two forces on the end of the landing gear as shown. Determine the horizontal and vertical components of reaction at the pin *B* and the force in strut *AC*.

From the FBD:

$$b = 0.3 \tan 20^{\circ} = 0.109 \text{ m}$$

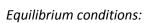
Equilibrium conditions:

$$\sum M_B = 0$$
;

$$6 \times a - 3 \times 0.8 + Fsin50 \times 0.3 - Fcos50 \times b = 0$$

 $6 \times 0.291 - 3 \times 0.8 + Fsin50 \times 0.3 - Fcos50 \times 0.109 = 0$
 $0.16 F = 0.653$

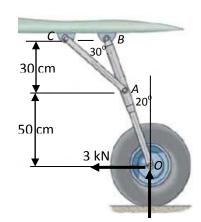
$$0.10T = 0.055$$

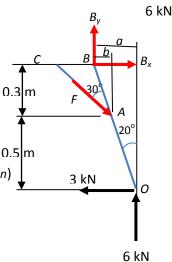

:
$$F = 4.081 \ kN$$

Equilibrium conditions:

$$\sum F_{x}=0$$
;

$$B_x + F \sin 50 - 3 = 0$$


$$B_x = 3 - 4.081 \sin 50 = -0.126 \, kN$$
 (opposite to assumed direction)



$$\sum F_y = 0;$$

$$B_{\nu} - F\cos 50 + 6 = 0$$

$$\therefore$$
 $B_{\rm v} = -6 + 4.081 \cos 50 = -3.377 \, kN$ (opposite to assumed direction)

