Engineering Mechanics I Midterm Exam (2011-2012)

Time: One hour

Instructors: Prof. Dr. Bishri Abdel-Mo'emen, Assoc. Prof. Ayman Ashour, and Dr. Waleed Albeshbeshy

Student Name: الإسم: Section No:

Question 1: (5 Points)

Resolve the 10 kN force F in Fig. (P1) into components acting along the u and v axes and determine the magnitudes of these components. Take θ =95° and β =25°.

$$\frac{r_u}{\sin 25} = \frac{10}{\sin 95}$$

$$F_u = \frac{10}{\sin 95} \sin 25 = 4.242 \ kN$$
 (in the negative *u* direction

Question 2: (5 Points)

I If the magnitude of the resultant force acting on the eyebolt is 1000 N and is directed along the positive x axis, determine the magnitude of F_2 and the angle θ .

Given:
$$R_x = 1000 \text{ N}$$

 $R_y = 0$

$$R_x = 500 \cos 30^\circ + F_2 \cos \theta - 350 (3/5)$$

 $1000 = 433 + F_2 \cos \theta - 210$
 $F_2 \cos \theta = 777 \text{ N}$ (1)

$$R_y = 500 \sin 30^{\circ} - F_2 \sin \theta - 350 (4/5)$$

 $0 = 250 - F_2 \sin \theta - 280$
 $F_2 \sin \theta = -30$ (2)

$$\tan \theta = (-30)/(777) = -0.039$$

 $\theta = -2.21^{o}$ (the negative means that F₂ in the first quadrant)

Substituting in either (1) or (2)

$$F_2 = 777.6 \ N$$

Question 3: (5 Points)

In order to raise the lamp post from the position shown, the force **F** on the cable must create a counterclockwise moment of 2100 N.m about point *A*. Determine the magnitude of **F** that must be applied to the cable

From Triangle ABC: The cosine law gives

$$\overline{CB} = \sqrt{3^2 + 1.5^2 - 2(1.5)(3)cos115}$$

= $\sqrt{15.054} = 3.88$

From the sine law:

$$\frac{1.5}{\sin\beta} = \frac{3.88}{\sin 115}$$

$$\therefore sin\beta = 0.35$$

The moment about A:

$$M_A = (F \sin \beta)(3)$$

 $\therefore 2100 = F \times 0.35 \times 3$
 $\therefore F = 2000 \text{ N}$

Question 4: (5 Points)

As an airplane's brake are applied, the nose wheel exerts two forces on the enc of the landing gear as shown. Determine the horizontal and vertica components of reaction at the pin *B* and the force in strut *AC*.

From the FBD: $a=0.8 \text{ tan } 20^{\circ}=0.291 \text{ m}$ $b=0.3 \text{ tan } 20^{\circ}=0.109 \text{ m}$

Equilibrium conditions:

Equilibrium conditions:

$$\sum F_x = 0;$$

$$-B_x - F\sin 50 + 3 = 0$$

$$B_x = 3 - 4.081 \sin 50 = -0.126 \, kN \text{ (opposite to assumed direction)}$$

Equilibrium conditions:

$$\sum F_y = 0;$$

$$B_y - F\cos 50 + 6 = 0$$

$$B_y = -6 + 4.081 \cos 50 = -3.377 \ kN \ (opposite to assumed direction)$$